Lie Algebroid Invariants for Subgeometry
We investigate the infinitesimal invariants of an immersed submanifold Σ of a Klein geometry M ≅ G/H, and in particular an invariant filtration of Lie algebroids over Σ. The invariants are derived from the logarithmic derivative of the immersion of Σ into M, a complete invariant introduced in the co...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209788 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Lie Algebroid Invariants for Subgeometry / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We investigate the infinitesimal invariants of an immersed submanifold Σ of a Klein geometry M ≅ G/H, and in particular an invariant filtration of Lie algebroids over Σ. The invariants are derived from the logarithmic derivative of the immersion of Σ into M, a complete invariant introduced in the companion article, A characterization of smooth maps into a homogeneous space. Applications of the Lie algebroid approach to subgeometry include a new interpretation of Cartan's method of moving frames and a novel proof of the fundamental theorem of hypersurfaces in Euclidean, elliptic, and hyperbolic geometry.
|
|---|---|
| ISSN: | 1815-0659 |