Initial-Boundary Value Problem for Stimulated Raman Scattering Model: Solvability of Whitham Type System of Equations Arising in Long-Time Asymptotic Analysis
An initial-boundary value problem for a model of stimulated Raman scattering was considered in [Moskovchenko E.A., Kotlyarov V.P., J. Phys. A: Math. Theor. 43 (2010), 055205, 31 pages]. The authors showed that in the long-time range t→+∞, the x>0, t>0 quarter plane is divided into 3 regions wi...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | Aydagulov, R.R., Minakov, A.A. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209838 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Initial-Boundary Value Problem for Stimulated Raman Scattering Model: Solvability of Whitham Type System of Equations Arising in Long-Time Asymptotic Analysis / R.R. Aydagulov, A.A. Minakov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 36 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Long-Time Asymptotic Behavior of an Integrable Model of the Stimulated Raman Scattering with Periodic Boundary Data
von: Moskovchenko, E.A., et al.
Veröffentlicht: (2009) -
Step-Initial Function to the MKdV Equation: Hyper-Elliptic Long-Time Asymptotics of the Solution
von: V. Kotlyarov, et al.
Veröffentlicht: (2012) -
Step-Initial Function to the MKdV Equation: Hyper-Elliptic Long-Time Asymptotics of the Solution
von: Kotlyarov, V., et al.
Veröffentlicht: (2012) -
Simple Periodic Boundary Data and Riemann-Hilbert Problem for Integrable Model of the Stimulated Raman Scattering
von: Moskovchenko, E.A.
Veröffentlicht: (2009) -
Solvability of equations with convolutions that arise in homogenization problems
von: A. L. Hulianytskyi, et al.
Veröffentlicht: (2021)