Integral Regulators for Higher Chow Complexes

Building on Kerr, Lewis, and Müller-Stach's work on the rational regulator, we prove the existence of an integral regulator on higher Chow complexes and give an explicit expression. This puts firm ground under some earlier results and speculations on the torsion in higher cycle groups by Kerr-L...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Li, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209839
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integral Regulators for Higher Chow Complexes / M. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209839
record_format dspace
spelling Li, M.
2025-11-27T14:47:24Z
2018
Integral Regulators for Higher Chow Complexes / M. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 11 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14C15; 14C25; 19F27
arXiv: 1805.04646
https://nasplib.isofts.kiev.ua/handle/123456789/209839
https://doi.org/10.3842/SIGMA.2018.118
Building on Kerr, Lewis, and Müller-Stach's work on the rational regulator, we prove the existence of an integral regulator on higher Chow complexes and give an explicit expression. This puts firm ground under some earlier results and speculations on the torsion in higher cycle groups by Kerr-Lewis-Müller-Stach, Petras, and Kerr-Yang.
This work was supported by the National Science Foundation [DMS-1361147; PI: Matt Kerr]. The author would like to thank his advisor, Matt Kerr, for his great help and discussions, J. McCarthy for graciously supplying the counterexample in Section 3, J. Lewis for his interest in this work, and the referee for their great help on improving the exposition.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Integral Regulators for Higher Chow Complexes
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Integral Regulators for Higher Chow Complexes
spellingShingle Integral Regulators for Higher Chow Complexes
Li, M.
title_short Integral Regulators for Higher Chow Complexes
title_full Integral Regulators for Higher Chow Complexes
title_fullStr Integral Regulators for Higher Chow Complexes
title_full_unstemmed Integral Regulators for Higher Chow Complexes
title_sort integral regulators for higher chow complexes
author Li, M.
author_facet Li, M.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Building on Kerr, Lewis, and Müller-Stach's work on the rational regulator, we prove the existence of an integral regulator on higher Chow complexes and give an explicit expression. This puts firm ground under some earlier results and speculations on the torsion in higher cycle groups by Kerr-Lewis-Müller-Stach, Petras, and Kerr-Yang.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209839
citation_txt Integral Regulators for Higher Chow Complexes / M. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT lim integralregulatorsforhigherchowcomplexes
first_indexed 2025-12-07T15:51:31Z
last_indexed 2025-12-07T15:51:31Z
_version_ 1850886109860462592