Integral Regulators for Higher Chow Complexes
Building on Kerr, Lewis, and Müller-Stach's work on the rational regulator, we prove the existence of an integral regulator on higher Chow complexes and give an explicit expression. This puts firm ground under some earlier results and speculations on the torsion in higher cycle groups by Kerr-L...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209839 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Integral Regulators for Higher Chow Complexes / M. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209839 |
|---|---|
| record_format |
dspace |
| spelling |
Li, M. 2025-11-27T14:47:24Z 2018 Integral Regulators for Higher Chow Complexes / M. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 11 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14C15; 14C25; 19F27 arXiv: 1805.04646 https://nasplib.isofts.kiev.ua/handle/123456789/209839 https://doi.org/10.3842/SIGMA.2018.118 Building on Kerr, Lewis, and Müller-Stach's work on the rational regulator, we prove the existence of an integral regulator on higher Chow complexes and give an explicit expression. This puts firm ground under some earlier results and speculations on the torsion in higher cycle groups by Kerr-Lewis-Müller-Stach, Petras, and Kerr-Yang. This work was supported by the National Science Foundation [DMS-1361147; PI: Matt Kerr]. The author would like to thank his advisor, Matt Kerr, for his great help and discussions, J. McCarthy for graciously supplying the counterexample in Section 3, J. Lewis for his interest in this work, and the referee for their great help on improving the exposition. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Integral Regulators for Higher Chow Complexes Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Integral Regulators for Higher Chow Complexes |
| spellingShingle |
Integral Regulators for Higher Chow Complexes Li, M. |
| title_short |
Integral Regulators for Higher Chow Complexes |
| title_full |
Integral Regulators for Higher Chow Complexes |
| title_fullStr |
Integral Regulators for Higher Chow Complexes |
| title_full_unstemmed |
Integral Regulators for Higher Chow Complexes |
| title_sort |
integral regulators for higher chow complexes |
| author |
Li, M. |
| author_facet |
Li, M. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Building on Kerr, Lewis, and Müller-Stach's work on the rational regulator, we prove the existence of an integral regulator on higher Chow complexes and give an explicit expression. This puts firm ground under some earlier results and speculations on the torsion in higher cycle groups by Kerr-Lewis-Müller-Stach, Petras, and Kerr-Yang.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209839 |
| citation_txt |
Integral Regulators for Higher Chow Complexes / M. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT lim integralregulatorsforhigherchowcomplexes |
| first_indexed |
2025-12-07T15:51:31Z |
| last_indexed |
2025-12-07T15:51:31Z |
| _version_ |
1850886109860462592 |