Truncated Solutions of Painlevé Equation Pv
We obtain convergent representations (as Borel summed transseries) for the five one-parameter families of truncated solutions of the fifth Painlevé equation with nonzero parameters, valid in half planes, for large independent variable. We also find the position of the first array of poles, bordering...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209840 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Truncated Solutions of Painlevé Equation Pv / R.D. Costin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 38 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We obtain convergent representations (as Borel summed transseries) for the five one-parameter families of truncated solutions of the fifth Painlevé equation with nonzero parameters, valid in half planes, for large independent variable. We also find the position of the first array of poles, bordering the region of analyticity. For a special value of this parameter, they represent tri-truncated solutions, analytic in almost the full complex plane, for a large independent variable. A brief historical note and references on truncated solutions of the other Painlevé equations are also included.
|
|---|---|
| ISSN: | 1815-0659 |