Truncated Solutions of Painlevé Equation Pv

We obtain convergent representations (as Borel summed transseries) for the five one-parameter families of truncated solutions of the fifth Painlevé equation with nonzero parameters, valid in half planes, for large independent variable. We also find the position of the first array of poles, bordering...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Costin, R.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209840
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Truncated Solutions of Painlevé Equation Pv / R.D. Costin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 38 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209840
record_format dspace
spelling Costin, R.D.
2025-11-27T14:47:47Z
2018
Truncated Solutions of Painlevé Equation Pv / R.D. Costin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 38 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33E17; 34M30; 34M25
arXiv: 1804.11273
https://nasplib.isofts.kiev.ua/handle/123456789/209840
https://doi.org/10.3842/SIGMA.2018.117
We obtain convergent representations (as Borel summed transseries) for the five one-parameter families of truncated solutions of the fifth Painlevé equation with nonzero parameters, valid in half planes, for large independent variable. We also find the position of the first array of poles, bordering the region of analyticity. For a special value of this parameter, they represent tri-truncated solutions, analytic in almost the full complex plane, for a large independent variable. A brief historical note and references on truncated solutions of the other Painlevé equations are also included.
The author is grateful to the editors for valuable references and information, and to the referees careful reading of the manuscript and for their helpful comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Truncated Solutions of Painlevé Equation Pv
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Truncated Solutions of Painlevé Equation Pv
spellingShingle Truncated Solutions of Painlevé Equation Pv
Costin, R.D.
title_short Truncated Solutions of Painlevé Equation Pv
title_full Truncated Solutions of Painlevé Equation Pv
title_fullStr Truncated Solutions of Painlevé Equation Pv
title_full_unstemmed Truncated Solutions of Painlevé Equation Pv
title_sort truncated solutions of painlevé equation pv
author Costin, R.D.
author_facet Costin, R.D.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We obtain convergent representations (as Borel summed transseries) for the five one-parameter families of truncated solutions of the fifth Painlevé equation with nonzero parameters, valid in half planes, for large independent variable. We also find the position of the first array of poles, bordering the region of analyticity. For a special value of this parameter, they represent tri-truncated solutions, analytic in almost the full complex plane, for a large independent variable. A brief historical note and references on truncated solutions of the other Painlevé equations are also included.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209840
citation_txt Truncated Solutions of Painlevé Equation Pv / R.D. Costin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 38 назв. — англ.
work_keys_str_mv AT costinrd truncatedsolutionsofpainleveequationpv
first_indexed 2025-12-07T12:54:10Z
last_indexed 2025-12-07T12:54:10Z
_version_ 1850885999767322624