Normal Functions over Locally Symmetric Varieties
We classify the irreducible Hermitian real variations of Hodge structure admitting an infinitesimal normal function, and draw conclusions for cycle-class maps on families of abelian varieties with a given Mumford-Tate group.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209841 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Normal Functions over Locally Symmetric Varieties / R. Keast, M. Kerr // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209841 |
|---|---|
| record_format |
dspace |
| spelling |
Keast, R. Kerr, M. 2025-11-27T14:48:19Z 2018 Normal Functions over Locally Symmetric Varieties / R. Keast, M. Kerr // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14D07; 14C25; 14M17; 17B45; 32M15; 32G20 arXiv: 1503.08355 https://nasplib.isofts.kiev.ua/handle/123456789/209841 https://doi.org/10.3842/SIGMA.2018.116 We classify the irreducible Hermitian real variations of Hodge structure admitting an infinitesimal normal function, and draw conclusions for cycle-class maps on families of abelian varieties with a given Mumford-Tate group. The authors thank P. Brosnan and G. Pearlstein for helpful discussions, the referees for their careful reading, and gratefully acknowledge support from NSF Grant DMS-1361147. This paper was written while MK was a member at the Institute for Advanced Study, and he thanks the IAS for excellent working conditions and the Fund for Mathematics for financial support. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Normal Functions over Locally Symmetric Varieties Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Normal Functions over Locally Symmetric Varieties |
| spellingShingle |
Normal Functions over Locally Symmetric Varieties Keast, R. Kerr, M. |
| title_short |
Normal Functions over Locally Symmetric Varieties |
| title_full |
Normal Functions over Locally Symmetric Varieties |
| title_fullStr |
Normal Functions over Locally Symmetric Varieties |
| title_full_unstemmed |
Normal Functions over Locally Symmetric Varieties |
| title_sort |
normal functions over locally symmetric varieties |
| author |
Keast, R. Kerr, M. |
| author_facet |
Keast, R. Kerr, M. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We classify the irreducible Hermitian real variations of Hodge structure admitting an infinitesimal normal function, and draw conclusions for cycle-class maps on families of abelian varieties with a given Mumford-Tate group.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209841 |
| citation_txt |
Normal Functions over Locally Symmetric Varieties / R. Keast, M. Kerr // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 29 назв. — англ. |
| work_keys_str_mv |
AT keastr normalfunctionsoverlocallysymmetricvarieties AT kerrm normalfunctionsoverlocallysymmetricvarieties |
| first_indexed |
2025-12-07T14:35:50Z |
| last_indexed |
2025-12-07T14:35:50Z |
| _version_ |
1850886109848928256 |