The Smallest Singular Values and Vector-Valued Jack Polynomials
There is a space of vector-valued nonsymmetric Jack polynomials associated with any irreducible representation of a symmetric group. Singular polynomials for the smallest singular values are constructed in terms of the Jack polynomials. The smallest singular values bound the region of positivity of...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209842 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | The Smallest Singular Values and Vector-Valued Jack Polynomials / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | There is a space of vector-valued nonsymmetric Jack polynomials associated with any irreducible representation of a symmetric group. Singular polynomials for the smallest singular values are constructed in terms of the Jack polynomials. The smallest singular values bound the region of positivity of the bilinear symmetric form for which the Jack polynomials are mutually orthogonal. As background, there are some results about general finite reflection groups and singular values in the context of standard modules of the rational Cherednik algebra.
|
|---|---|
| ISSN: | 1815-0659 |