Three-Parameter Solutions of the PV Schlesinger-Type Equation near the Point at Infinity and the Monodromy Data
For the Schlesinger-type equation related to the fifth Painlevé equation (V) via isomonodromy deformation, we present a three-parameter family of matrix solutions along the imaginary axis near the point at infinity, and also the corresponding monodromy data. Two-parameter solutions of (V) with their...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209844 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Three-Parameter Solutions of the PV Schlesinger-Type Equation near the Point at Infinity and the Monodromy Data / S. Shimomura // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | For the Schlesinger-type equation related to the fifth Painlevé equation (V) via isomonodromy deformation, we present a three-parameter family of matrix solutions along the imaginary axis near the point at infinity, and also the corresponding monodromy data. Two-parameter solutions of (V) with their monodromy data immediately follow from our results. Under certain conditions, these solutions of (V) admit sequences of zeros and of poles along the imaginary axis. The monodromy data are obtained by matching techniques for a perturbed linear system.
|
|---|---|
| ISSN: | 1815-0659 |