The Moduli Spaces of Parabolic Connections with a Quadratic Differential and Isomonodromic Deformations
In this paper, we study the moduli spaces of parabolic connections with a quadratic differential. We endow these moduli spaces with symplectic structures by using the fundamental 2-forms on the moduli spaces of parabolic connections (which are phase spaces of isomonodromic deformation systems). More...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209846 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | The Moduli Spaces of Parabolic Connections with a Quadratic Differential and Isomonodromic Deformations / A. Komyo // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In this paper, we study the moduli spaces of parabolic connections with a quadratic differential. We endow these moduli spaces with symplectic structures by using the fundamental 2-forms on the moduli spaces of parabolic connections (which are phase spaces of isomonodromic deformation systems). Moreover, we see that the moduli spaces of parabolic connections with a quadratic differential are equipped with structures of twisted cotangent bundles.
|
|---|---|
| ISSN: | 1815-0659 |