Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane

In this paper, we obtain large z asymptotic expansions in the complex plane for the tau function corresponding to special function solutions of the Painlevé II differential equation. Using the fact that these tau functions can be written as n × n Wronskian determinants involving classical Airy funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
1. Verfasser: Deaño, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209850
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane / A. Deaño // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 35 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper, we obtain large z asymptotic expansions in the complex plane for the tau function corresponding to special function solutions of the Painlevé II differential equation. Using the fact that these tau functions can be written as n × n Wronskian determinants involving classical Airy functions, we use Heine's formula to rewrite them as n-fold integrals, which can be asymptotically approximated using the classical method of steepest descent in the complex plane.
ISSN:1815-0659