Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane

In this paper, we obtain large z asymptotic expansions in the complex plane for the tau function corresponding to special function solutions of the Painlevé II differential equation. Using the fact that these tau functions can be written as n × n Wronskian determinants involving classical Airy funct...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Deaño, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209850
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane / A. Deaño // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper, we obtain large z asymptotic expansions in the complex plane for the tau function corresponding to special function solutions of the Painlevé II differential equation. Using the fact that these tau functions can be written as n × n Wronskian determinants involving classical Airy functions, we use Heine's formula to rewrite them as n-fold integrals, which can be asymptotically approximated using the classical method of steepest descent in the complex plane.
ISSN:1815-0659