Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane

In this paper, we obtain large z asymptotic expansions in the complex plane for the tau function corresponding to special function solutions of the Painlevé II differential equation. Using the fact that these tau functions can be written as n × n Wronskian determinants involving classical Airy funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
1. Verfasser: Deaño, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209850
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane / A. Deaño // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 35 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209850
record_format dspace
spelling Deaño, A.
2025-11-27T14:53:57Z
2018
Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane / A. Deaño // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 35 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55; 34E05; 33C10; 30E10
arXiv: 1804.00563
https://nasplib.isofts.kiev.ua/handle/123456789/209850
https://doi.org/10.3842/SIGMA.2018.107
In this paper, we obtain large z asymptotic expansions in the complex plane for the tau function corresponding to special function solutions of the Painlevé II differential equation. Using the fact that these tau functions can be written as n × n Wronskian determinants involving classical Airy functions, we use Heine's formula to rewrite them as n-fold integrals, which can be asymptotically approximated using the classical method of steepest descent in the complex plane.
The author acknowledges financial support from the EPSRC grant "Painlevé equations: analytical properties and numerical computation", reference EP/P026532/1, and from the project MTM2015-65888-C4-2-P from the Spanish Ministry of Economy and Competitiveness. The author wishes to thank M. Fasondini, D. Huybrechs, A. Iserles, A.R. Its, A.B.J. Kuijlaars, A.F. Loureiro, C. Pech, and W. Van Assche for stimulating discussions on the topic and scope of this paper, as well as the organizers of the workshop "Painlevé Equations and Applications" held at the University of Michigan, August 25-29, 2017, for their hospitality. The comments, remarks, and corrections of the anonymous referees have led to an improved version of the paper, and they are greatly appreciated.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane
spellingShingle Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane
Deaño, A.
title_short Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane
title_full Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane
title_fullStr Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane
title_full_unstemmed Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane
title_sort large z asymptotics for special function solutions of painlevé ii in the complex plane
author Deaño, A.
author_facet Deaño, A.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper, we obtain large z asymptotic expansions in the complex plane for the tau function corresponding to special function solutions of the Painlevé II differential equation. Using the fact that these tau functions can be written as n × n Wronskian determinants involving classical Airy functions, we use Heine's formula to rewrite them as n-fold integrals, which can be asymptotically approximated using the classical method of steepest descent in the complex plane.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209850
citation_txt Large z Asymptotics for Special Function Solutions of Painlevé II in the Complex Plane / A. Deaño // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 35 назв. — англ.
work_keys_str_mv AT deanoa largezasymptoticsforspecialfunctionsolutionsofpainleveiiinthecomplexplane
first_indexed 2025-12-04T11:29:22Z
last_indexed 2025-12-04T11:29:22Z
_version_ 1850886000916561920