Generalized Hermite Polynomials and Monodromy-Free Schrödinger Operators
The paper gives a review of recent progress in the classification of monodromy-free Schrödinger operators with rational potentials. We concentrate on a class of potentials constituted by generalized Hermite polynomials. These polynomials, defined as Wronskians of classic Hermite polynomials, appear...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | Novokshenov, V.Yu. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209851 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Generalized Hermite Polynomials and Monodromy-Free Schrödinger Operators / V.Yu. Novokshenov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Essays on the spectral properties of the polynomially perturbed Hermite operator
von: V. Makarov
Veröffentlicht: (2024) -
The generalized Hermite polynomials, their properties, and the differential equation which they satisfy
von: V. L. Makarov
Veröffentlicht: (2020) -
Recurrence Relations for Wronskian Hermite Polynomials
von: Bonneux, N., et al.
Veröffentlicht: (2018) -
Profinite closures of the iterated monodromy groups associated with quadratic polynomials
von: Samoilovych, Ihor
Veröffentlicht: (2017) -
Profinite closures of the iterated monodromy groups associated with quadratic polynomials
von: Samoilovych, Ihor
Veröffentlicht: (2017)