Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary
We quantize abelian Yang-Mills theory on Riemannian manifolds with boundaries in any dimension. The quantization proceeds in two steps. First, the classical theory is encoded into an axiomatic form describing solution spaces associated with manifolds. Second, the quantum theory is constructed from t...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209852 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary / H.G. Díaz-Marín, R. Oeckl // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209852 |
|---|---|
| record_format |
dspace |
| spelling |
Díaz-Marín, H.G. Oeckl, R. 2025-11-27T14:54:37Z 2018 Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary / H.G. Díaz-Marín, R. Oeckl // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D30; 58E15; 58E30;81T13 arXiv: 1712.05537 https://nasplib.isofts.kiev.ua/handle/123456789/209852 https://doi.org/10.3842/SIGMA.2018.105 We quantize abelian Yang-Mills theory on Riemannian manifolds with boundaries in any dimension. The quantization proceeds in two steps. First, the classical theory is encoded into an axiomatic form describing solution spaces associated with manifolds. Second, the quantum theory is constructed from the classical axiomatic data in a functorial manner. The target is general boundary quantum field theory, a TQFT-type axiomatic formulation of quantum field theory. We thank the anonymous referees for their contributions to improving a draft version of this paper. This work was partially supported by CONACYT project grant 259258, UNAM-DGAPAPAPIIT project grant IN109415, and PRODEP project grant UMSNH-386. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary |
| spellingShingle |
Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary Díaz-Marín, H.G. Oeckl, R. |
| title_short |
Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary |
| title_full |
Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary |
| title_fullStr |
Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary |
| title_full_unstemmed |
Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary |
| title_sort |
quantum abelian yang-mills theory on riemannian manifolds with boundary |
| author |
Díaz-Marín, H.G. Oeckl, R. |
| author_facet |
Díaz-Marín, H.G. Oeckl, R. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We quantize abelian Yang-Mills theory on Riemannian manifolds with boundaries in any dimension. The quantization proceeds in two steps. First, the classical theory is encoded into an axiomatic form describing solution spaces associated with manifolds. Second, the quantum theory is constructed from the classical axiomatic data in a functorial manner. The target is general boundary quantum field theory, a TQFT-type axiomatic formulation of quantum field theory.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209852 |
| citation_txt |
Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary / H.G. Díaz-Marín, R. Oeckl // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ. |
| work_keys_str_mv |
AT diazmarinhg quantumabelianyangmillstheoryonriemannianmanifoldswithboundary AT oecklr quantumabelianyangmillstheoryonriemannianmanifoldswithboundary |
| first_indexed |
2025-12-07T19:09:36Z |
| last_indexed |
2025-12-07T19:09:36Z |
| _version_ |
1850886172444721153 |