Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials

For a simple Lie algebra g and an irreducible faithful representation π of g, we introduce the Schur polynomials of (g,π)-type. We then derive the Sato-Zhou-type formula for tau functions of the Drinfeld-Sokolov (DS) hierarchy of g-type. Namely, we show that the tau functions are linear combinations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Cafasso, M., Du Crest De Villeneuve, A., Yang, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209853
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials / M. Cafasso, A. Du Crest De Villeneuve, D. Yang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 41 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209853
record_format dspace
spelling Cafasso, M.
Du Crest De Villeneuve, A.
Yang, D.
2025-11-27T14:55:36Z
2018
Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials / M. Cafasso, A. Du Crest De Villeneuve, D. Yang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37K10; 17B80
arXiv: 1709.07309
https://nasplib.isofts.kiev.ua/handle/123456789/209853
https://doi.org/10.3842/SIGMA.2018.104
For a simple Lie algebra g and an irreducible faithful representation π of g, we introduce the Schur polynomials of (g,π)-type. We then derive the Sato-Zhou-type formula for tau functions of the Drinfeld-Sokolov (DS) hierarchy of g-type. Namely, we show that the tau functions are linear combinations of the Schur polynomials of (g,π)-type with the coefficients being the Plücker coordinates. As an application, we provide a way of computing polynomial tau functions for the DS hierarchy. For g of low rank, we give several examples of polynomial tau functions and use them to detect bilinear equations for the DS hierarchy.
We would like to thank Ferenc Balogh, Marco Bertola, Boris Dubrovin, John Harnad, Leonardo Patimo, Daniele Valeri, Chao-Zhong Wu, and Jian Zhou for helpful discussions. D.Y. is grateful to Youjin Zhang and Boris Dubrovin for their advice and to Victor Kac for helpful suggestions. We thank the anonymous referees for constructive comments. Part of our work was done at SISSA; we acknowledge SISSA for excellent working conditions and generous support. A.D. and M.C. thank the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment. Part of the work of D.Y. was done during his visits to LAREMA; he acknowledges the support of LAREMA and warm hospitality. A.D. and M.C. acknowledge the support of the project IPaDEGAN (H2020-MSCA-RISE-2017), Grant No. 778010.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials
spellingShingle Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials
Cafasso, M.
Du Crest De Villeneuve, A.
Yang, D.
title_short Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials
title_full Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials
title_fullStr Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials
title_full_unstemmed Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials
title_sort drinfeld-sokolov hierarchies, tau functions, and generalized schur polynomials
author Cafasso, M.
Du Crest De Villeneuve, A.
Yang, D.
author_facet Cafasso, M.
Du Crest De Villeneuve, A.
Yang, D.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For a simple Lie algebra g and an irreducible faithful representation π of g, we introduce the Schur polynomials of (g,π)-type. We then derive the Sato-Zhou-type formula for tau functions of the Drinfeld-Sokolov (DS) hierarchy of g-type. Namely, we show that the tau functions are linear combinations of the Schur polynomials of (g,π)-type with the coefficients being the Plücker coordinates. As an application, we provide a way of computing polynomial tau functions for the DS hierarchy. For g of low rank, we give several examples of polynomial tau functions and use them to detect bilinear equations for the DS hierarchy.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209853
citation_txt Drinfeld-Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials / M. Cafasso, A. Du Crest De Villeneuve, D. Yang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT cafassom drinfeldsokolovhierarchiestaufunctionsandgeneralizedschurpolynomials
AT ducrestdevilleneuvea drinfeldsokolovhierarchiestaufunctionsandgeneralizedschurpolynomials
AT yangd drinfeldsokolovhierarchiestaufunctionsandgeneralizedschurpolynomials
first_indexed 2025-12-02T18:54:12Z
last_indexed 2025-12-02T18:54:12Z
_version_ 1850886000920756224