Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers

We present an explicit formula for the transition matrix C from the type Cₙ degeneration of the Koornwinder polynomials P₍₁ᵣ₎(x|a,−a,c,−c|q,t) with one column diagrams, to the type Cₙ monomial symmetric polynomials m₍₁ᵣ₎(x). The entries of the matrix C enjoy a set of three-term recursion relations,...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Hoshino, A., Shiraishi, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209856
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers / A. Hoshino, J. Shiraishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209856
record_format dspace
spelling Hoshino, A.
Shiraishi, J.
2025-11-27T14:56:40Z
2018
Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers / A. Hoshino, J. Shiraishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D52; 33D45
arXiv: 1801.09939
https://nasplib.isofts.kiev.ua/handle/123456789/209856
https://doi.org/10.3842/SIGMA.2018.101
We present an explicit formula for the transition matrix C from the type Cₙ degeneration of the Koornwinder polynomials P₍₁ᵣ₎(x|a,−a,c,−c|q,t) with one column diagrams, to the type Cₙ monomial symmetric polynomials m₍₁ᵣ₎(x). The entries of the matrix C enjoy a set of three-term recursion relations, which can be regarded as a (a, c, t)-deformation of the one for the Catalan triangle or ballot numbers. Some transition matrices are studied associated with the type (Cₙ, Cₙ) Macdonald polynomials P⁽ᶜⁿ'ᶜⁿ⁾₍₁ᵣ₎(x|b;q,t)=P₍₁ᵣ₎(x|b¹ᐟ²,−b¹ᐟ²,q¹ᐟ²b¹ᐟ²,−q¹ᐟ²b¹ᐟ²|q,t). It is also shown that the q-ballot numbers appear as the Kostka polynomials, namely in the transition matrix from the Schur polynomials P⁽ᶜⁿ'ᶜⁿ⁾₍₁ᵣ₎(x|q;q,q) to the Hall-Littlewood polynomials PP⁽ᶜⁿ'ᶜⁿ⁾₍₁ᵣ₎(x|t;0,t).
Research of A.H. is supported by JSPS KAKENHI (Grant Number 16K05186). Research of J.S. is supported by JSPS KAKENHI (Grant Numbers 15K04808 and 16K05186). The authors thank M. Noumi, B. Feigin, and H. Awata for stimulating discussion. They thank the anonymous referees for their various constructive comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers
spellingShingle Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers
Hoshino, A.
Shiraishi, J.
title_short Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers
title_full Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers
title_fullStr Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers
title_full_unstemmed Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers
title_sort macdonald polynomials of type cₙ with one-column diagrams and deformed catalan numbers
author Hoshino, A.
Shiraishi, J.
author_facet Hoshino, A.
Shiraishi, J.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present an explicit formula for the transition matrix C from the type Cₙ degeneration of the Koornwinder polynomials P₍₁ᵣ₎(x|a,−a,c,−c|q,t) with one column diagrams, to the type Cₙ monomial symmetric polynomials m₍₁ᵣ₎(x). The entries of the matrix C enjoy a set of three-term recursion relations, which can be regarded as a (a, c, t)-deformation of the one for the Catalan triangle or ballot numbers. Some transition matrices are studied associated with the type (Cₙ, Cₙ) Macdonald polynomials P⁽ᶜⁿ'ᶜⁿ⁾₍₁ᵣ₎(x|b;q,t)=P₍₁ᵣ₎(x|b¹ᐟ²,−b¹ᐟ²,q¹ᐟ²b¹ᐟ²,−q¹ᐟ²b¹ᐟ²|q,t). It is also shown that the q-ballot numbers appear as the Kostka polynomials, namely in the transition matrix from the Schur polynomials P⁽ᶜⁿ'ᶜⁿ⁾₍₁ᵣ₎(x|q;q,q) to the Hall-Littlewood polynomials PP⁽ᶜⁿ'ᶜⁿ⁾₍₁ᵣ₎(x|t;0,t).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209856
citation_txt Macdonald Polynomials of Type Cₙ with One-Column Diagrams and Deformed Catalan Numbers / A. Hoshino, J. Shiraishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT hoshinoa macdonaldpolynomialsoftypecnwithonecolumndiagramsanddeformedcatalannumbers
AT shiraishij macdonaldpolynomialsoftypecnwithonecolumndiagramsanddeformedcatalannumbers
first_indexed 2025-12-07T14:26:49Z
last_indexed 2025-12-07T14:26:49Z
_version_ 1850886002013372416