Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory

In this paper, we start with proving that the Schrödinger equation (SE) with the classical 12−6 Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such a differential equation....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Acosta-Humánez, M.F., Acosta-Humánez, P.B., Tuirán, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209858
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory / M.F. Acosta-Humánez, P.B. Acosta-Humánez, E. Tuirán // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 51 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper, we start with proving that the Schrödinger equation (SE) with the classical 12−6 Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such a differential equation. We study the 10−6 potential through DGT and SUSYQM, being one of the two partner potentials built with a superpotential of the form w(r)∝1/r⁵. We also find that it is integrable in the sense of DGT for zero energy. A first analysis of the applicability and physical consequences of the model is carried out in terms of the so-called De Boer principle of corresponding states. A comparison of the second virial coefficient B(T) for both potentials shows good agreement for low temperatures. As a consequence of these results, we propose the 10−6 potential as an integrable alternative to be applied in further studies instead of the original 12−6 L-J potential. Finally, we study through DGT and SUSYQM the integrability of the SE with a generalized (2ν−2)−ν L-J potential. This analysis does not include the study of square integrable wave functions, excited states, and energies different than zero for the generalization of L-J potentials.
ISSN:1815-0659