Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory

In this paper, we start with proving that the Schrödinger equation (SE) with the classical 12−6 Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such a differential equation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Acosta-Humánez, M.F., Acosta-Humánez, P.B., Tuirán, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209858
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory / M.F. Acosta-Humánez, P.B. Acosta-Humánez, E. Tuirán // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 51 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209858
record_format dspace
spelling Acosta-Humánez, M.F.
Acosta-Humánez, P.B.
Tuirán, E.
2025-11-27T14:57:39Z
2018
Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory / M.F. Acosta-Humánez, P.B. Acosta-Humánez, E. Tuirán // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 51 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 12H05; 81V55; 81Q05
arXiv: 1803.01247
https://nasplib.isofts.kiev.ua/handle/123456789/209858
https://doi.org/10.3842/SIGMA.2018.099
In this paper, we start with proving that the Schrödinger equation (SE) with the classical 12−6 Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such a differential equation. We study the 10−6 potential through DGT and SUSYQM, being one of the two partner potentials built with a superpotential of the form w(r)∝1/r⁵. We also find that it is integrable in the sense of DGT for zero energy. A first analysis of the applicability and physical consequences of the model is carried out in terms of the so-called De Boer principle of corresponding states. A comparison of the second virial coefficient B(T) for both potentials shows good agreement for low temperatures. As a consequence of these results, we propose the 10−6 potential as an integrable alternative to be applied in further studies instead of the original 12−6 L-J potential. Finally, we study through DGT and SUSYQM the integrability of the SE with a generalized (2ν−2)−ν L-J potential. This analysis does not include the study of square integrable wave functions, excited states, and energies different than zero for the generalization of L-J potentials.
P. Acosta-Humánez thanks to Universidad Simón Bolívar, Research Project Métodos Algebraicos y Combinatorios en Sistemas Dinámicos y Física Matemática. He also acknowledges and thanks the support of COLCIENCIAS through grant number FP44842-013-2018 of the Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación. E.T. wishes to thank the German Service of Academic Exchange (DAAD) for financial support, and Professor M. Reuter at the Institute of Physics in Uni-Mainz for stimulating discussions about this work. Finally, the authors thank the anonymous referees for their valuable comments and suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
spellingShingle Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
Acosta-Humánez, M.F.
Acosta-Humánez, P.B.
Tuirán, E.
title_short Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
title_full Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
title_fullStr Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
title_full_unstemmed Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
title_sort generalized lennard-jones potentials, susyqm and differential galois theory
author Acosta-Humánez, M.F.
Acosta-Humánez, P.B.
Tuirán, E.
author_facet Acosta-Humánez, M.F.
Acosta-Humánez, P.B.
Tuirán, E.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper, we start with proving that the Schrödinger equation (SE) with the classical 12−6 Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such a differential equation. We study the 10−6 potential through DGT and SUSYQM, being one of the two partner potentials built with a superpotential of the form w(r)∝1/r⁵. We also find that it is integrable in the sense of DGT for zero energy. A first analysis of the applicability and physical consequences of the model is carried out in terms of the so-called De Boer principle of corresponding states. A comparison of the second virial coefficient B(T) for both potentials shows good agreement for low temperatures. As a consequence of these results, we propose the 10−6 potential as an integrable alternative to be applied in further studies instead of the original 12−6 L-J potential. Finally, we study through DGT and SUSYQM the integrability of the SE with a generalized (2ν−2)−ν L-J potential. This analysis does not include the study of square integrable wave functions, excited states, and energies different than zero for the generalization of L-J potentials.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209858
citation_txt Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory / M.F. Acosta-Humánez, P.B. Acosta-Humánez, E. Tuirán // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 51 назв. — англ.
work_keys_str_mv AT acostahumanezmf generalizedlennardjonespotentialssusyqmanddifferentialgaloistheory
AT acostahumanezpb generalizedlennardjonespotentialssusyqmanddifferentialgaloistheory
AT tuirane generalizedlennardjonespotentialssusyqmanddifferentialgaloistheory
first_indexed 2025-12-07T18:06:20Z
last_indexed 2025-12-07T18:06:20Z
_version_ 1850886110857658368