The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables
This paper extends, to a class of systems of semi-linear hyperbolic second order PDEs in three variables, the geometric study of a single nonlinear hyperbolic PDE in the plane as presented in [Anderson I.M., Kamran N., Duke Math. J. 87 (1997), 265-319]. The constrained variational bi-complex is intr...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | Froehlich, S. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209861 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Variational Bi-Complex for Systems of Semi-Linear Hyperbolic PDEs in Three Variables / S. Froehlich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 36 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Hypercomplex method for solving linear PDEs
von: V. S. Shpakivskyi
Veröffentlicht: (2018) -
Hyperbolic Variational Inequality of the Third Order with Variable Exponent of Nonlinearity
von: O. T. Kholiavka
Veröffentlicht: (2014) -
Solvable nonlinear evolution PDEs in multidimensional space
von: Calogero, F., et al.
Veröffentlicht: (2006) -
Hyperbolic cross and complexity of various classes of linear ill-posed problems
von: H. L. Myleiko, et al.
Veröffentlicht: (2017) -
Semi-lattice of varieties of quasigroups with linearity
von: Sokhatsky, F. M., et al.
Veröffentlicht: (2021)