Tronquée Solutions of the Third and Fourth Painlevé Equations

Recently, in a paper by Lin, Dai, and Tibboel, it was shown that the third and fourth Painlevé equations have tronquée and tritronquée solutions. We obtain global information about these tronquée and tritronquée solutions. We find their sectors of analyticity, their Borel summed representations in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
1. Verfasser: Xia, X.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209862
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Tronquée Solutions of the Third and Fourth Painlevé Equations / X. Xia // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209862
record_format dspace
spelling Xia, X.
2025-11-27T18:02:25Z
2018
Tronquée Solutions of the Third and Fourth Painlevé Equations / X. Xia // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 31 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M25; 34M40; 34M55
arXiv: 1803.11230
https://nasplib.isofts.kiev.ua/handle/123456789/209862
https://doi.org/10.3842/SIGMA.2018.095
Recently, in a paper by Lin, Dai, and Tibboel, it was shown that the third and fourth Painlevé equations have tronquée and tritronquée solutions. We obtain global information about these tronquée and tritronquée solutions. We find their sectors of analyticity, their Borel summed representations in these sectors, as well as the asymptotic position of the singularities near the boundaries of the analyticity sectors. We also correct slight errors in the paper mentioned.
I am very grateful for the advice and help of Professors Ovidiu Costin and Rodica Costin when I worked on this problem. I also greatly appreciate the referees whose comments helped me improve my paper significantly.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Tronquée Solutions of the Third and Fourth Painlevé Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Tronquée Solutions of the Third and Fourth Painlevé Equations
spellingShingle Tronquée Solutions of the Third and Fourth Painlevé Equations
Xia, X.
title_short Tronquée Solutions of the Third and Fourth Painlevé Equations
title_full Tronquée Solutions of the Third and Fourth Painlevé Equations
title_fullStr Tronquée Solutions of the Third and Fourth Painlevé Equations
title_full_unstemmed Tronquée Solutions of the Third and Fourth Painlevé Equations
title_sort tronquée solutions of the third and fourth painlevé equations
author Xia, X.
author_facet Xia, X.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Recently, in a paper by Lin, Dai, and Tibboel, it was shown that the third and fourth Painlevé equations have tronquée and tritronquée solutions. We obtain global information about these tronquée and tritronquée solutions. We find their sectors of analyticity, their Borel summed representations in these sectors, as well as the asymptotic position of the singularities near the boundaries of the analyticity sectors. We also correct slight errors in the paper mentioned.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209862
citation_txt Tronquée Solutions of the Third and Fourth Painlevé Equations / X. Xia // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT xiax tronqueesolutionsofthethirdandfourthpainleveequations
first_indexed 2025-12-07T14:08:31Z
last_indexed 2025-12-07T14:08:31Z
_version_ 1850886002068946944