A Riemann-Hilbert Approach to the Heun Equation
We describe the close connection between the linear system for the sixth Painlevé equation and the general Heun equation, formulate the Riemann-Hilbert problem for the Heun functions, and show how, in the case of reducible monodromy, the Riemann-Hilbert formalism can be used to construct explicit po...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209864 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A Riemann-Hilbert Approach to the Heun Equation / B. Dubrovin, A. Kapaev // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!