An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals
We construct an additional independent integral of motion for a class of three-dimensional minimally superintegrable systems with a constant magnetic field. This class was introduced in [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages] and it is known to possess periodic closed orbits. In the p...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209865 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals / A. Marchesiello, L. Šnobl // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We construct an additional independent integral of motion for a class of three-dimensional minimally superintegrable systems with a constant magnetic field. This class was introduced in [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages] and it is known to possess periodic closed orbits. In the present paper, we demonstrate that it is maximally superintegrable. Depending on the values of the parameters of the system, the newly found integral can be of arbitrarily high polynomial order in momenta.
|
|---|---|
| ISSN: | 1815-0659 |