An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals

We construct an additional independent integral of motion for a class of three-dimensional minimally superintegrable systems with a constant magnetic field. This class was introduced in [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages] and it is known to possess periodic closed orbits. In the p...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автори: Marchesiello, A., Šnobl, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209865
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An Infinite Family of Maximally Superintegrable Systems in a Magnetic Field with Higher Order Integrals / A. Marchesiello, L. Šnobl // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We construct an additional independent integral of motion for a class of three-dimensional minimally superintegrable systems with a constant magnetic field. This class was introduced in [J. Phys. A: Math. Theor. 50 (2017), 245202, 24 pages] and it is known to possess periodic closed orbits. In the present paper, we demonstrate that it is maximally superintegrable. Depending on the values of the parameters of the system, the newly found integral can be of arbitrarily high polynomial order in momenta.
ISSN:1815-0659