Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane

We study the asymptotic behaviour of orthogonal polynomials in the complex plane that are associated with a certain normal matrix model. The model depends on a parameter, and the asymptotic distribution of the eigenvalues undergoes a transition for a special value of the parameter, where it develops...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Authors: Bertola, M., Rebelo, J.G.E., Grava, T.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209866
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane / M. Bertola, J.G.E. Rebelo, T. Grava // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 43 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209866
record_format dspace
spelling Bertola, M.
Rebelo, J.G.E.
Grava, T.
2025-11-27T18:03:44Z
2018
Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane / M. Bertola, J.G.E. Rebelo, T. Grava // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 43 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55; 34M56; 33C15
arXiv: 1802.01153
https://nasplib.isofts.kiev.ua/handle/123456789/209866
https://doi.org/10.3842/SIGMA.2018.091
We study the asymptotic behaviour of orthogonal polynomials in the complex plane that are associated with a certain normal matrix model. The model depends on a parameter, and the asymptotic distribution of the eigenvalues undergoes a transition for a special value of the parameter, where it develops a corner-type singularity. In the double scaling limit near the transition, we determine the asymptotic behaviour of the orthogonal polynomials in terms of a solution of the Painlevé IV equation. We determine the Fredholm determinant associated with such a solution, and we compute it numerically on the real line, showing also that the corresponding Painlevé transcendent is pole-free on a semiaxis.
The authors wish to thank the anonymous referees for their many suggestions for improving this manuscript. T.G. acknowledges the support of the H2020-MSCA-RISE-2017 PROJECT No. 778010 IPADEGAN. M.B. acknowledges the support by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2016-06660 and the FQRNT grant “Matrices Aléatoires, Processus Stochastiques et Systèmes Intégrables” (2013–PR–166790).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane
spellingShingle Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane
Bertola, M.
Rebelo, J.G.E.
Grava, T.
title_short Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane
title_full Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane
title_fullStr Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane
title_full_unstemmed Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane
title_sort painlevé iv critical asymptotics for orthogonal polynomials in the complex plane
author Bertola, M.
Rebelo, J.G.E.
Grava, T.
author_facet Bertola, M.
Rebelo, J.G.E.
Grava, T.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the asymptotic behaviour of orthogonal polynomials in the complex plane that are associated with a certain normal matrix model. The model depends on a parameter, and the asymptotic distribution of the eigenvalues undergoes a transition for a special value of the parameter, where it develops a corner-type singularity. In the double scaling limit near the transition, we determine the asymptotic behaviour of the orthogonal polynomials in terms of a solution of the Painlevé IV equation. We determine the Fredholm determinant associated with such a solution, and we compute it numerically on the real line, showing also that the corresponding Painlevé transcendent is pole-free on a semiaxis.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209866
citation_txt Painlevé IV Critical Asymptotics for Orthogonal Polynomials in the Complex Plane / M. Bertola, J.G.E. Rebelo, T. Grava // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 43 назв. — англ.
work_keys_str_mv AT bertolam painleveivcriticalasymptoticsfororthogonalpolynomialsinthecomplexplane
AT rebelojge painleveivcriticalasymptoticsfororthogonalpolynomialsinthecomplexplane
AT gravat painleveivcriticalasymptoticsfororthogonalpolynomialsinthecomplexplane
first_indexed 2025-12-07T13:42:14Z
last_indexed 2025-12-07T13:42:14Z
_version_ 1850886002099355648