Fundamental Solutions and Gegenbauer Expansions of Helmholtz Operators in Riemannian Spaces of Constant Curvature
We perform global and local analysis of oscillatory and damped spherically symmetric fundamental solutions for Helmholtz operators (−Δ±β²) in d-dimensional, R-radius hyperbolic HᵈR and hyperspherical SᵈR geometry, which represent Riemannian manifolds with positive constant and negative constant sect...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | Cohl, H.S., Dang, T.H., Dunster, T.M. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209867 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Fundamental Solutions and Gegenbauer Expansions of Helmholtz Operators in Riemannian Spaces of Constant Curvature / H.S. Cohl, T.H. Dang, T.M. Dunster // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 37 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
von: Cohl, H.S., et al.
Veröffentlicht: (2015) -
Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
von: Cohl, H.S.
Veröffentlicht: (2013) -
Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature
von: Herranz, F.J., et al.
Veröffentlicht: (2006) -
On the Extended-Hamiltonian Structure of Certain Superintegrable Systems on Constant-Curvature Riemannian and Pseudo-Riemannian Surfaces
von: Chanu, Claudia Maria, et al.
Veröffentlicht: (2020) -
Opposite Antipodal Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
von: Cohl, H.S.
Veröffentlicht: (2011)