A Product on Double Cosets of B∞

For some infinite-dimensional groups G and suitable subgroups K, there exists a monoid structure on the set K∖G/K of double cosets of G with respect to K. In this paper, we show that group B∞, of the braids with finitely many crossings on infinitely many strands, admits such a structure.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Gonzalez Pagotto, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209870
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Product on Double Cosets of B∞ / P. Gonzalez Pagotto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For some infinite-dimensional groups G and suitable subgroups K, there exists a monoid structure on the set K∖G/K of double cosets of G with respect to K. In this paper, we show that group B∞, of the braids with finitely many crossings on infinitely many strands, admits such a structure.
ISSN:1815-0659