A Product on Double Cosets of B∞
For some infinite-dimensional groups G and suitable subgroups K, there exists a monoid structure on the set K∖G/K of double cosets of G with respect to K. In this paper, we show that group B∞, of the braids with finitely many crossings on infinitely many strands, admits such a structure.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209870 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A Product on Double Cosets of B∞ / P. Gonzalez Pagotto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | For some infinite-dimensional groups G and suitable subgroups K, there exists a monoid structure on the set K∖G/K of double cosets of G with respect to K. In this paper, we show that group B∞, of the braids with finitely many crossings on infinitely many strands, admits such a structure.
|
|---|---|
| ISSN: | 1815-0659 |