A Product on Double Cosets of B∞

For some infinite-dimensional groups G and suitable subgroups K, there exists a monoid structure on the set K∖G/K of double cosets of G with respect to K. In this paper, we show that group B∞, of the braids with finitely many crossings on infinitely many strands, admits such a structure.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Gonzalez Pagotto, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209870
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Product on Double Cosets of B∞ / P. Gonzalez Pagotto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209870
record_format dspace
spelling Gonzalez Pagotto, P.
2025-11-28T09:36:10Z
2018
A Product on Double Cosets of B∞ / P. Gonzalez Pagotto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20F36; 20M99; 20C99
arXiv: 1804.09603
https://nasplib.isofts.kiev.ua/handle/123456789/209870
https://doi.org/10.3842/SIGMA.2018.134
For some infinite-dimensional groups G and suitable subgroups K, there exists a monoid structure on the set K∖G/K of double cosets of G with respect to K. In this paper, we show that group B∞, of the braids with finitely many crossings on infinitely many strands, admits such a structure.
This research was supported by FAPESP process 2015/03341-9. We are indebted to L. Funar and A.K.M. Libardi for useful discussions and continuous support.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Product on Double Cosets of B∞
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Product on Double Cosets of B∞
spellingShingle A Product on Double Cosets of B∞
Gonzalez Pagotto, P.
title_short A Product on Double Cosets of B∞
title_full A Product on Double Cosets of B∞
title_fullStr A Product on Double Cosets of B∞
title_full_unstemmed A Product on Double Cosets of B∞
title_sort product on double cosets of b∞
author Gonzalez Pagotto, P.
author_facet Gonzalez Pagotto, P.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For some infinite-dimensional groups G and suitable subgroups K, there exists a monoid structure on the set K∖G/K of double cosets of G with respect to K. In this paper, we show that group B∞, of the braids with finitely many crossings on infinitely many strands, admits such a structure.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209870
citation_txt A Product on Double Cosets of B∞ / P. Gonzalez Pagotto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT gonzalezpagottop aproductondoublecosetsofb
AT gonzalezpagottop productondoublecosetsofb
first_indexed 2025-12-04T19:18:47Z
last_indexed 2025-12-04T19:18:47Z
_version_ 1850886003037831168