A Product on Double Cosets of B∞
For some infinite-dimensional groups G and suitable subgroups K, there exists a monoid structure on the set K∖G/K of double cosets of G with respect to K. In this paper, we show that group B∞, of the braids with finitely many crossings on infinitely many strands, admits such a structure.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | Gonzalez Pagotto, P. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209870 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A Product on Double Cosets of B∞ / P. Gonzalez Pagotto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Model charged cylindrical nanopore in a colloidal dispersion: charge reversal, overcharging and double overcharging
von: González-Tovar, E., et al.
Veröffentlicht: (2017) -
Control complex for a double-sided microstrip detector production and tests
von: Kaplij, A.A., et al.
Veröffentlicht: (2000) -
A class of double crossed biproducts
von: T. S. Ma, et al.
Veröffentlicht: (2018) -
Production Efficiency of Ribbon-Type Sections by the Drawing Method in Doubled-Roll Roller Dies
von: V. G. Razdobreev, et al.
Veröffentlicht: (2023) -
On the lacunary (A,φ)-statistical convergence of double sequences
von: E. Savaє
Veröffentlicht: (2018)