Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids

In this note, we prove that intrinsic characteristic classes of Lie algebroids - which in degree one recover the modular class - behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzb...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Frejlich, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209880
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids / P. Frejlich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209880
record_format dspace
spelling Frejlich, P.
2025-11-28T09:40:50Z
2018
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids / P. Frejlich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D17; 57R20
arXiv: 1805.00542
https://nasplib.isofts.kiev.ua/handle/123456789/209880
https://doi.org/10.3842/SIGMA.2018.124
In this note, we prove that intrinsic characteristic classes of Lie algebroids - which in degree one recover the modular class - behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Transform. Groups 13 (2008), 727-755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681-721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121-169].
Work partially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vrije Competitie grant "Flexibility and Rigidity of Geometric Structures" 612.001.101) and by IMPA (CAPES-FORTAL project). I would like to thank Ioan Mărcut¸, Ori Yudilevich, Rui Loja Fernandes, Olivier Brahic, and David Martínez-Torres. I am also grateful to the anonymous referees for their many useful comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids
spellingShingle Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids
Frejlich, P.
title_short Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids
title_full Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids
title_fullStr Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids
title_full_unstemmed Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids
title_sort morita invariance of intrinsic characteristic classes of lie algebroids
author Frejlich, P.
author_facet Frejlich, P.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this note, we prove that intrinsic characteristic classes of Lie algebroids - which in degree one recover the modular class - behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Transform. Groups 13 (2008), 727-755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681-721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121-169].
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209880
citation_txt Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids / P. Frejlich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT frejlichp moritainvarianceofintrinsiccharacteristicclassesofliealgebroids
first_indexed 2025-12-07T19:04:40Z
last_indexed 2025-12-07T19:04:40Z
_version_ 1850886173644292096