Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids
In this note, we prove that intrinsic characteristic classes of Lie algebroids - which in degree one recover the modular class - behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzb...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209880 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids / P. Frejlich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209880 |
|---|---|
| record_format |
dspace |
| spelling |
Frejlich, P. 2025-11-28T09:40:50Z 2018 Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids / P. Frejlich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D17; 57R20 arXiv: 1805.00542 https://nasplib.isofts.kiev.ua/handle/123456789/209880 https://doi.org/10.3842/SIGMA.2018.124 In this note, we prove that intrinsic characteristic classes of Lie algebroids - which in degree one recover the modular class - behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Transform. Groups 13 (2008), 727-755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681-721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121-169]. Work partially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Vrije Competitie grant "Flexibility and Rigidity of Geometric Structures" 612.001.101) and by IMPA (CAPES-FORTAL project). I would like to thank Ioan Mărcut¸, Ori Yudilevich, Rui Loja Fernandes, Olivier Brahic, and David Martínez-Torres. I am also grateful to the anonymous referees for their many useful comments. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids |
| spellingShingle |
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids Frejlich, P. |
| title_short |
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids |
| title_full |
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids |
| title_fullStr |
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids |
| title_full_unstemmed |
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids |
| title_sort |
morita invariance of intrinsic characteristic classes of lie algebroids |
| author |
Frejlich, P. |
| author_facet |
Frejlich, P. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this note, we prove that intrinsic characteristic classes of Lie algebroids - which in degree one recover the modular class - behave functorially with respect to arbitrary transverse maps, and in particular are weak Morita invariants. In the modular case, this result appeared in [Kosmann-Schwarzbach Y., Laurent-Gengoux C., Weinstein A., Transform. Groups 13 (2008), 727-755], and with a connectivity assumption which we here show to be unnecessary, it appeared in [Crainic M., Comment. Math. Helv. 78 (2003), 681-721] and [Ginzburg V.L., J. Symplectic Geom. 1 (2001), 121-169].
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209880 |
| citation_txt |
Morita Invariance of Intrinsic Characteristic Classes of Lie Algebroids / P. Frejlich // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 32 назв. — англ. |
| work_keys_str_mv |
AT frejlichp moritainvarianceofintrinsiccharacteristicclassesofliealgebroids |
| first_indexed |
2025-12-07T19:04:40Z |
| last_indexed |
2025-12-07T19:04:40Z |
| _version_ |
1850886173644292096 |