Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the class...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209882 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I / A. Guillot // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 47 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the classification of those that do not have multivalued solutions.
|
|---|---|
| ISSN: | 1815-0659 |