Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I

For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the class...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2018
Автор: Guillot, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209882
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I / A. Guillot // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 47 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209882
record_format dspace
spelling Guillot, A.
2025-11-28T09:41:44Z
2018
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I / A. Guillot // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 47 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55; 34M45; 34M35
arXiv: 1804.10664
https://nasplib.isofts.kiev.ua/handle/123456789/209882
https://doi.org/10.3842/SIGMA.2018.122
For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the classification of those that do not have multivalued solutions.
The author gratefully acknowledges support from grant PAPIIT IN102518 (UNAM, Mexico). He thanks the referees for their thorough reading and helpful comments and suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
spellingShingle Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
Guillot, A.
title_short Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
title_full Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
title_fullStr Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
title_full_unstemmed Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
title_sort quadratic differential equations in three variables without multivalued solutions: part i
author Guillot, A.
author_facet Guillot, A.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the classification of those that do not have multivalued solutions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209882
citation_txt Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I / A. Guillot // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 47 назв. — англ.
work_keys_str_mv AT guillota quadraticdifferentialequationsinthreevariableswithoutmultivaluedsolutionsparti
first_indexed 2025-12-07T14:35:16Z
last_indexed 2025-12-07T14:35:16Z
_version_ 1850886113025064960