Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the class...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209882 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I / A. Guillot // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 47 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209882 |
|---|---|
| record_format |
dspace |
| spelling |
Guillot, A. 2025-11-28T09:41:44Z 2018 Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I / A. Guillot // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 47 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55; 34M45; 34M35 arXiv: 1804.10664 https://nasplib.isofts.kiev.ua/handle/123456789/209882 https://doi.org/10.3842/SIGMA.2018.122 For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the classification of those that do not have multivalued solutions. The author gratefully acknowledges support from grant PAPIIT IN102518 (UNAM, Mexico). He thanks the referees for their thorough reading and helpful comments and suggestions. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I |
| spellingShingle |
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I Guillot, A. |
| title_short |
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I |
| title_full |
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I |
| title_fullStr |
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I |
| title_full_unstemmed |
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I |
| title_sort |
quadratic differential equations in three variables without multivalued solutions: part i |
| author |
Guillot, A. |
| author_facet |
Guillot, A. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the classification of those that do not have multivalued solutions.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209882 |
| citation_txt |
Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I / A. Guillot // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 47 назв. — англ. |
| work_keys_str_mv |
AT guillota quadraticdifferentialequationsinthreevariableswithoutmultivaluedsolutionsparti |
| first_indexed |
2025-12-07T14:35:16Z |
| last_indexed |
2025-12-07T14:35:16Z |
| _version_ |
1850886113025064960 |