Matrix Bailey Lemma and the Star-Triangle Relation
We compare previously found finite-dimensional matrix and integral operator realizations of the Bailey lemma employing univariate elliptic hypergeometric functions. With the help of residue calculus, we explicitly show how the integral Bailey lemma can be reduced to its matrix version. As a conseque...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209883 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Matrix Bailey Lemma and the Star-Triangle Relation / K.Yu. Magadov, V.P. Spiridonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We compare previously found finite-dimensional matrix and integral operator realizations of the Bailey lemma employing univariate elliptic hypergeometric functions. With the help of residue calculus, we explicitly show how the integral Bailey lemma can be reduced to its matrix version. As a consequence, we demonstrate that the matrix Bailey lemma can be interpreted as a star-triangle relation, or as a Coxeter relation for a permutation group.
|
|---|---|
| ISSN: | 1815-0659 |