Matrix Bailey Lemma and the Star-Triangle Relation

We compare previously found finite-dimensional matrix and integral operator realizations of the Bailey lemma employing univariate elliptic hypergeometric functions. With the help of residue calculus, we explicitly show how the integral Bailey lemma can be reduced to its matrix version. As a conseque...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Authors: Magadov, K.Yu., Spiridonov, V.P.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209883
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Matrix Bailey Lemma and the Star-Triangle Relation / K.Yu. Magadov, V.P. Spiridonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209883
record_format dspace
spelling Magadov, K.Yu.
Spiridonov, V.P.
2025-11-28T09:42:06Z
2018
Matrix Bailey Lemma and the Star-Triangle Relation / K.Yu. Magadov, V.P. Spiridonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 25 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D60; 33E20
arXiv: 1810.10806
https://nasplib.isofts.kiev.ua/handle/123456789/209883
https://doi.org/10.3842/SIGMA.2018.121
We compare previously found finite-dimensional matrix and integral operator realizations of the Bailey lemma employing univariate elliptic hypergeometric functions. With the help of residue calculus, we explicitly show how the integral Bailey lemma can be reduced to its matrix version. As a consequence, we demonstrate that the matrix Bailey lemma can be interpreted as a star-triangle relation, or as a Coxeter relation for a permutation group.
This work is partially supported by the Laboratory of Mirror Symmetry NRU HSE, RF government grant, ag. no. 14.641.31.0001.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Matrix Bailey Lemma and the Star-Triangle Relation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Matrix Bailey Lemma and the Star-Triangle Relation
spellingShingle Matrix Bailey Lemma and the Star-Triangle Relation
Magadov, K.Yu.
Spiridonov, V.P.
title_short Matrix Bailey Lemma and the Star-Triangle Relation
title_full Matrix Bailey Lemma and the Star-Triangle Relation
title_fullStr Matrix Bailey Lemma and the Star-Triangle Relation
title_full_unstemmed Matrix Bailey Lemma and the Star-Triangle Relation
title_sort matrix bailey lemma and the star-triangle relation
author Magadov, K.Yu.
Spiridonov, V.P.
author_facet Magadov, K.Yu.
Spiridonov, V.P.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We compare previously found finite-dimensional matrix and integral operator realizations of the Bailey lemma employing univariate elliptic hypergeometric functions. With the help of residue calculus, we explicitly show how the integral Bailey lemma can be reduced to its matrix version. As a consequence, we demonstrate that the matrix Bailey lemma can be interpreted as a star-triangle relation, or as a Coxeter relation for a permutation group.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209883
citation_txt Matrix Bailey Lemma and the Star-Triangle Relation / K.Yu. Magadov, V.P. Spiridonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT magadovkyu matrixbaileylemmaandthestartrianglerelation
AT spiridonovvp matrixbaileylemmaandthestartrianglerelation
first_indexed 2025-12-07T12:55:39Z
last_indexed 2025-12-07T12:55:39Z
_version_ 1850886004210139136