On a Yang-Mills Type Functional
We study a functional that derives from the classical Yang-Mills functional and Born-Infeld theory. We establish its first variation formula and prove the existence of critical points. We also obtain the second variation formula.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2019 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210053 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On a Yang-Mills Type Functional / C. Gherghe // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-210053 |
|---|---|
| record_format |
dspace |
| spelling |
Gherghe, C. 2025-12-02T09:29:07Z 2019 On a Yang-Mills Type Functional / C. Gherghe // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 4 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58E15; 81T13; 53C07 arXiv: 1811.01517 https://nasplib.isofts.kiev.ua/handle/123456789/210053 https://doi.org/10.3842/SIGMA.2019.022 We study a functional that derives from the classical Yang-Mills functional and Born-Infeld theory. We establish its first variation formula and prove the existence of critical points. We also obtain the second variation formula. The author thanks the referees for very carefully reading a first version of the paper and for their useful suggestions. This work is partially supported by a Grant of the Ministry of Research and Innovation, CNCS - UEFISCDI, Project Number PN-III-P4-ID-PCE-2016-0065, within PNCDI III. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On a Yang-Mills Type Functional Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On a Yang-Mills Type Functional |
| spellingShingle |
On a Yang-Mills Type Functional Gherghe, C. |
| title_short |
On a Yang-Mills Type Functional |
| title_full |
On a Yang-Mills Type Functional |
| title_fullStr |
On a Yang-Mills Type Functional |
| title_full_unstemmed |
On a Yang-Mills Type Functional |
| title_sort |
on a yang-mills type functional |
| author |
Gherghe, C. |
| author_facet |
Gherghe, C. |
| publishDate |
2019 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We study a functional that derives from the classical Yang-Mills functional and Born-Infeld theory. We establish its first variation formula and prove the existence of critical points. We also obtain the second variation formula.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/210053 |
| citation_txt |
On a Yang-Mills Type Functional / C. Gherghe // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 4 назв. — англ. |
| work_keys_str_mv |
AT gherghec onayangmillstypefunctional |
| first_indexed |
2025-12-07T21:24:13Z |
| last_indexed |
2025-12-07T21:24:13Z |
| _version_ |
1850886222995521536 |