Almost Lie Algebroids and Characteristic Classes

Almost Lie algebroids are generalizations of Lie algebroids, when the Jacobiator is not necessarily null. A simple example is given, for which a Lie algebroid bracket or a Courant bundle is not possible for the given anchor, but a natural extension of the bundle and the new anchor allows a Lie algeb...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Popescu, M., Popescu, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210054
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Almost Lie Algebroids and Characteristic Classes / M. Popescu, P. Popescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Almost Lie algebroids are generalizations of Lie algebroids, when the Jacobiator is not necessarily null. A simple example is given, for which a Lie algebroid bracket or a Courant bundle is not possible for the given anchor, but a natural extension of the bundle and the new anchor allows a Lie algebroid bracket. A cohomology and related characteristic classes of an almost Lie algebroid are also constructed. We prove that these characteristic classes are all pull-backs of the characteristic classes of the base space, as in the case of a Lie algebroid.
ISSN:1815-0659