Almost Lie Algebroids and Characteristic Classes

Almost Lie algebroids are generalizations of Lie algebroids, when the Jacobiator is not necessarily null. A simple example is given, for which a Lie algebroid bracket or a Courant bundle is not possible for the given anchor, but a natural extension of the bundle and the new anchor allows a Lie algeb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
Hauptverfasser: Popescu, M., Popescu, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210054
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Almost Lie Algebroids and Characteristic Classes / M. Popescu, P. Popescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210054
record_format dspace
spelling Popescu, M.
Popescu, P.
2025-12-02T09:29:34Z
2019
Almost Lie Algebroids and Characteristic Classes / M. Popescu, P. Popescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D17; 53C05; 58A99
arXiv: 1808.03116
https://nasplib.isofts.kiev.ua/handle/123456789/210054
https://doi.org/10.3842/SIGMA.2019.021
Almost Lie algebroids are generalizations of Lie algebroids, when the Jacobiator is not necessarily null. A simple example is given, for which a Lie algebroid bracket or a Courant bundle is not possible for the given anchor, but a natural extension of the bundle and the new anchor allows a Lie algebroid bracket. A cohomology and related characteristic classes of an almost Lie algebroid are also constructed. We prove that these characteristic classes are all pull-backs of the characteristic classes of the base space, as in the case of a Lie algebroid.
The authors thank all three distinct referees for their valuable comments that helped us to improve the content of the paper. The research was supported by the Horizon 2020-2017-RISE777911 project.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Almost Lie Algebroids and Characteristic Classes
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Almost Lie Algebroids and Characteristic Classes
spellingShingle Almost Lie Algebroids and Characteristic Classes
Popescu, M.
Popescu, P.
title_short Almost Lie Algebroids and Characteristic Classes
title_full Almost Lie Algebroids and Characteristic Classes
title_fullStr Almost Lie Algebroids and Characteristic Classes
title_full_unstemmed Almost Lie Algebroids and Characteristic Classes
title_sort almost lie algebroids and characteristic classes
author Popescu, M.
Popescu, P.
author_facet Popescu, M.
Popescu, P.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Almost Lie algebroids are generalizations of Lie algebroids, when the Jacobiator is not necessarily null. A simple example is given, for which a Lie algebroid bracket or a Courant bundle is not possible for the given anchor, but a natural extension of the bundle and the new anchor allows a Lie algebroid bracket. A cohomology and related characteristic classes of an almost Lie algebroid are also constructed. We prove that these characteristic classes are all pull-backs of the characteristic classes of the base space, as in the case of a Lie algebroid.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210054
citation_txt Almost Lie Algebroids and Characteristic Classes / M. Popescu, P. Popescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT popescum almostliealgebroidsandcharacteristicclasses
AT popescup almostliealgebroidsandcharacteristicclasses
first_indexed 2025-12-07T21:24:13Z
last_indexed 2025-12-07T21:24:13Z
_version_ 1850886222938898432