Braid Group Action on Affine Yangian

We study braid group actions on Yangians associated with symmetrizable Kac-Moody Lie algebras. As an application, we focus on the affine Yangian of type A and use the action to prove that the image of the evaluation map contains the diagonal Heisenberg algebra inside ĝlN.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: Kodera, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210055
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Braid Group Action on Affine Yangian / R. Kodera // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210055
record_format dspace
spelling Kodera, R.
2025-12-02T09:29:56Z
2019
Braid Group Action on Affine Yangian / R. Kodera // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 18 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B10; 17B37; 17B67
arXiv: 1805.01621
https://nasplib.isofts.kiev.ua/handle/123456789/210055
https://doi.org/10.3842/SIGMA.2019.020
We study braid group actions on Yangians associated with symmetrizable Kac-Moody Lie algebras. As an application, we focus on the affine Yangian of type A and use the action to prove that the image of the evaluation map contains the diagonal Heisenberg algebra inside ĝlN.
The author would like to thank Yoshihisa Saito for suggesting that he study braid group action on the affine Yangian. Discussions with him improved the contents of this paper. He also thanks Nicolas Guay for telling him the reference [3] and the referees for their helpful comments. This work was supported by JSPS KAKENHI Grant Numbers 26287004, 17H06127, 18K13390, and the Kyoto University Foundation.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Braid Group Action on Affine Yangian
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Braid Group Action on Affine Yangian
spellingShingle Braid Group Action on Affine Yangian
Kodera, R.
title_short Braid Group Action on Affine Yangian
title_full Braid Group Action on Affine Yangian
title_fullStr Braid Group Action on Affine Yangian
title_full_unstemmed Braid Group Action on Affine Yangian
title_sort braid group action on affine yangian
author Kodera, R.
author_facet Kodera, R.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study braid group actions on Yangians associated with symmetrizable Kac-Moody Lie algebras. As an application, we focus on the affine Yangian of type A and use the action to prove that the image of the evaluation map contains the diagonal Heisenberg algebra inside ĝlN.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210055
citation_txt Braid Group Action on Affine Yangian / R. Kodera // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT koderar braidgroupactiononaffineyangian
first_indexed 2025-12-07T21:24:13Z
last_indexed 2025-12-07T21:24:13Z
_version_ 1850886222967209984