Linear Representations and Frobenius Morphisms of Groupoids

Given a morphism of (small) groupoids with an injective object map, we provide sufficient and necessary conditions under which the induction and co-induction functors between the categories of linear representations are naturally isomorphic. A morphism with this property is termed a Frobenius morphi...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Barbarán Sánchez, J.J., El Kaoutit, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210056
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Linear Representations and Frobenius Morphisms of Groupoids / J.J. Barbarán Sánchez, L. El Kaoutit // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210056
record_format dspace
spelling Barbarán Sánchez, J.J.
El Kaoutit, L.
2025-12-02T09:30:23Z
2019
Linear Representations and Frobenius Morphisms of Groupoids / J.J. Barbarán Sánchez, L. El Kaoutit // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 31 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 18B40, 20L05, 20L99; 18D10,16D90, 18D35
arXiv: 1806.09327
https://nasplib.isofts.kiev.ua/handle/123456789/210056
https://doi.org/10.3842/SIGMA.2019.019
Given a morphism of (small) groupoids with an injective object map, we provide sufficient and necessary conditions under which the induction and co-induction functors between the categories of linear representations are naturally isomorphic. A morphism with this property is termed a Frobenius morphism of groupoids. As a consequence, an extension by a subgroupoid is Frobenius if and only if each fibre of the (left or right) pull-back biset has finitely many orbits. Our results extend and clarify the classical Frobenius reciprocity formulae in the theory of finite groups, and characterize Frobenius extensions of algebras with enough orthogonal idempotents.
Research supported by the Spanish Ministerio de Econom´ıa y Competitividad and the European Union FEDER, grant MTM2016-77033-P. The authors would like to thank the referees for their comments and suggestions, which helped us to improve the earlier version of this paper. We are also grateful to Paolo Saracco for his careful reading and for his comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Linear Representations and Frobenius Morphisms of Groupoids
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Linear Representations and Frobenius Morphisms of Groupoids
spellingShingle Linear Representations and Frobenius Morphisms of Groupoids
Barbarán Sánchez, J.J.
El Kaoutit, L.
title_short Linear Representations and Frobenius Morphisms of Groupoids
title_full Linear Representations and Frobenius Morphisms of Groupoids
title_fullStr Linear Representations and Frobenius Morphisms of Groupoids
title_full_unstemmed Linear Representations and Frobenius Morphisms of Groupoids
title_sort linear representations and frobenius morphisms of groupoids
author Barbarán Sánchez, J.J.
El Kaoutit, L.
author_facet Barbarán Sánchez, J.J.
El Kaoutit, L.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Given a morphism of (small) groupoids with an injective object map, we provide sufficient and necessary conditions under which the induction and co-induction functors between the categories of linear representations are naturally isomorphic. A morphism with this property is termed a Frobenius morphism of groupoids. As a consequence, an extension by a subgroupoid is Frobenius if and only if each fibre of the (left or right) pull-back biset has finitely many orbits. Our results extend and clarify the classical Frobenius reciprocity formulae in the theory of finite groups, and characterize Frobenius extensions of algebras with enough orthogonal idempotents.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210056
citation_txt Linear Representations and Frobenius Morphisms of Groupoids / J.J. Barbarán Sánchez, L. El Kaoutit // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT barbaransanchezjj linearrepresentationsandfrobeniusmorphismsofgroupoids
AT elkaoutitl linearrepresentationsandfrobeniusmorphismsofgroupoids
first_indexed 2025-12-07T21:24:13Z
last_indexed 2025-12-07T21:24:13Z
_version_ 1850886222969307136