Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space

We survey some recent developments in the asymptotic geometry of the Hitchin moduli space, starting with an introduction to the Hitchin moduli space and hyperkähler geometry.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: Fredrickson, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210057
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space / L. Fredrickson // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 38 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210057
record_format dspace
spelling Fredrickson, L.
2025-12-02T09:30:52Z
2019
Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space / L. Fredrickson // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 38 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C07; 53C26
arXiv: 1809.05735
https://nasplib.isofts.kiev.ua/handle/123456789/210057
https://doi.org/10.3842/SIGMA.2019.018
We survey some recent developments in the asymptotic geometry of the Hitchin moduli space, starting with an introduction to the Hitchin moduli space and hyperkähler geometry.
These notes are based on a 3-hour mini-course aimed at early graduate students, given on November 11-12, 2017, at UIC. This course was part of the workshop "Workshop on the geometry and physics of Higgs bundles" and the following conference "Current Trends for Spectral Data III" organized by Laura Schaposnik. (The notes have been updated to include a survey of results through October 2018.) My trip for the mini-course was funded by: the UIC NSF RTG grant DMS-1246844; L.P. Schaposnik’s UIC Start-up fund; and NSF DMS 1107452, 1107263, 1107367 RNMS: GEometric structures And Representation varieties (the GEAR Network). I thank Laura Schaposnik for organizing the events and for her encouragement to contribute these notes. I thank Rafe Mazzeo for many discussions about the asymptotic geometry of the Hitchin moduli space, and Rafe Mazzeo, Steve Rayan, and the anonymous referees for their useful suggestions and comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space
spellingShingle Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space
Fredrickson, L.
title_short Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space
title_full Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space
title_fullStr Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space
title_full_unstemmed Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space
title_sort perspectives on the asymptotic geometry of the hitchin moduli space
author Fredrickson, L.
author_facet Fredrickson, L.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We survey some recent developments in the asymptotic geometry of the Hitchin moduli space, starting with an introduction to the Hitchin moduli space and hyperkähler geometry.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210057
citation_txt Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space / L. Fredrickson // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 38 назв. — англ.
work_keys_str_mv AT fredricksonl perspectivesontheasymptoticgeometryofthehitchinmodulispace
first_indexed 2025-12-07T21:24:14Z
last_indexed 2025-12-07T21:24:14Z
_version_ 1850886224083943424