On Reducible Degeneration of Hyperelliptic Curves and Soliton Solutions

In this paper, we consider a reducible degeneration of a hyperelliptic curve of genus g. Using the Sato Grassmannian, we show that the limits of hyperelliptic solutions of the KP hierarchy exist and become soliton solutions of various types. We recover some results of Abenda, who studied regular sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
1. Verfasser: Nakayashiki, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210066
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Reducible Degeneration of Hyperelliptic Curves and Soliton Solutions / A. Nakayashiki // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper, we consider a reducible degeneration of a hyperelliptic curve of genus g. Using the Sato Grassmannian, we show that the limits of hyperelliptic solutions of the KP hierarchy exist and become soliton solutions of various types. We recover some results of Abenda, who studied regular soliton solutions corresponding to a reducible rational curve obtained as a degeneration of a hyperelliptic curve. We study singular soliton solutions as well and clarify how the singularity structure of solutions is reflected in the matrices that determine soliton solutions.
ISSN:1815-0659