Heteroclinic Orbits and Nonintegrability in Two-Degree-of-Freedom Hamiltonian Systems with Saddle-Centers
We consider a class of two-degree-of-freedom Hamiltonian systems with saddle-centers connected by heteroclinic orbits and discuss some relationships between the existence of transverse heteroclinic orbits and nonintegrability. By the Lyapunov center theorem, there is a family of periodic orbits near...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2019 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/210173 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Heteroclinic Orbits and Nonintegrability in Two-Degree-of-Freedom Hamiltonian Systems with Saddle-Centers / K. Yagasaki, S. Yamanaka // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 32 назв. — англ. |