Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin

We prove that there exists a unique odd meromorphic solution of dP3, u(τ), such that u(0) = 0, and study some of its properties, mainly: the coefficients of its Taylor expansion at the origin and asymptotic behaviour as τ→+∞.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: Kitaev, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210176
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin / A.V. Kitaev // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210176
record_format dspace
spelling Kitaev, A.V.
2025-12-03T14:25:40Z
2019
Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin / A.V. Kitaev // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 13 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M40; 33E17; 34M50; 34M55; 34M60
arXiv: 1809.00122
https://nasplib.isofts.kiev.ua/handle/123456789/210176
https://doi.org/10.3842/SIGMA.2019.046
We prove that there exists a unique odd meromorphic solution of dP3, u(τ), such that u(0) = 0, and study some of its properties, mainly: the coefficients of its Taylor expansion at the origin and asymptotic behaviour as τ→+∞.
The author is grateful to P.D. Miller and B.I. Suleimanov for discussions of the papers [1, 11]. The author is indebted to the referees for their significant contribution to improving the quality of the original version of this paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin
spellingShingle Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin
Kitaev, A.V.
title_short Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin
title_full Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin
title_fullStr Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin
title_full_unstemmed Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin
title_sort meromorphic solution of the degenerate third painlevé equation vanishing at the origin
author Kitaev, A.V.
author_facet Kitaev, A.V.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We prove that there exists a unique odd meromorphic solution of dP3, u(τ), such that u(0) = 0, and study some of its properties, mainly: the coefficients of its Taylor expansion at the origin and asymptotic behaviour as τ→+∞.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210176
citation_txt Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin / A.V. Kitaev // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT kitaevav meromorphicsolutionofthedegeneratethirdpainleveequationvanishingattheorigin
first_indexed 2025-12-07T21:24:38Z
last_indexed 2025-12-07T21:24:38Z
_version_ 1850886249283321856