Generalised Darboux-Koenigs Metrics and 3-Dimensional Superintegrable Systems
The Darboux-Koenigs metrics in 2D are an important class of conformally flat, non-constant curvature metrics with a single Killing vector and a pair of quadratic Killing tensors. In [arXiv:1804.06904], it was shown how to derive these by using the conformal symmetries of the 2D Euclidean metric. In...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2019 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210185 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Generalised Darboux-Koenigs Metrics and 3-Dimensional Superintegrable Systems / A.P. Fordy, Q. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The Darboux-Koenigs metrics in 2D are an important class of conformally flat, non-constant curvature metrics with a single Killing vector and a pair of quadratic Killing tensors. In [arXiv:1804.06904], it was shown how to derive these by using the conformal symmetries of the 2D Euclidean metric. In this paper, we consider the conformal symmetries of the 3D Euclidean metric and similarly derive a large family of conformally flat metrics possessing between 1 and 3 Killing vectors (and therefore not constant curvature), together with a number of quadratic Killing tensors. We refer to these as generalised Darboux-Koenigs metrics. We thus construct multi-parameter families of super-integrable systems in 3 degrees of freedom. Restricting the parameters increases the isometry algebra, which enables us to fully determine the Poisson algebra of first integrals. This larger algebra of isometries is then used to reduce from 3 to 2 degrees of freedom, obtaining Darboux-Koenigs kinetic energies with potential functions, which are specific cases of the known super-integrable potentials.
|
|---|---|
| ISSN: | 1815-0659 |