p-Adic Properties of Hauptmoduln with Applications to Moonshine

The theory of monstrous moonshine asserts that the coefficients of Hauptmoduln, including the j-function, coincide precisely with the graded characters of the monster module, an infinite-dimensional graded representation of the monster group. On the other hand, Lehner and Atkin proved that the coeff...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: Chen, R.C., Marks, S., Tyler, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210189
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:p-Adic Properties of Hauptmoduln with Applications to Moonshine / R.C. Chen, S. Marks, M. Tyler // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210189
record_format dspace
spelling Chen, R.C.
Marks, S.
Tyler, M.
2025-12-03T14:31:45Z
2019
p-Adic Properties of Hauptmoduln with Applications to Moonshine / R.C. Chen, S. Marks, M. Tyler // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 42 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 11F11; 11F22; 11F33
arXiv: 1809.02913
https://nasplib.isofts.kiev.ua/handle/123456789/210189
https://doi.org/10.3842/SIGMA.2019.033
The theory of monstrous moonshine asserts that the coefficients of Hauptmoduln, including the j-function, coincide precisely with the graded characters of the monster module, an infinite-dimensional graded representation of the monster group. On the other hand, Lehner and Atkin proved that the coefficients of the j-function satisfy congruences modulo pⁿ for p ∈ {2, 3, 5, 7, 11}, which led to the theory of p-adic modular forms. We combine these two aspects of the j-function to give a general theory of congruences modulo powers of primes satisfied by the Hauptmoduln appearing in monstrous moonshine. We prove that many of these Hauptmoduln satisfy such congruences, and we exhibit a relationship between these congruences and the group structure of the monster. We also find a distinguished class of subgroups of the monster with graded characters satisfying such congruences.
We wish to thank Ken Ono, John Duncan, and Larry Rolen for their support and guidance, as well as Frank Calegari for useful information regarding lifts of characteristic p modular forms for the primes p = 2, 3. We thank our referees for helpful comments. We also thank Emory University, Princeton University, the Asa Griggs Candler Fund, and NSF grant DMS-1557960.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
p-Adic Properties of Hauptmoduln with Applications to Moonshine
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title p-Adic Properties of Hauptmoduln with Applications to Moonshine
spellingShingle p-Adic Properties of Hauptmoduln with Applications to Moonshine
Chen, R.C.
Marks, S.
Tyler, M.
title_short p-Adic Properties of Hauptmoduln with Applications to Moonshine
title_full p-Adic Properties of Hauptmoduln with Applications to Moonshine
title_fullStr p-Adic Properties of Hauptmoduln with Applications to Moonshine
title_full_unstemmed p-Adic Properties of Hauptmoduln with Applications to Moonshine
title_sort p-adic properties of hauptmoduln with applications to moonshine
author Chen, R.C.
Marks, S.
Tyler, M.
author_facet Chen, R.C.
Marks, S.
Tyler, M.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The theory of monstrous moonshine asserts that the coefficients of Hauptmoduln, including the j-function, coincide precisely with the graded characters of the monster module, an infinite-dimensional graded representation of the monster group. On the other hand, Lehner and Atkin proved that the coefficients of the j-function satisfy congruences modulo pⁿ for p ∈ {2, 3, 5, 7, 11}, which led to the theory of p-adic modular forms. We combine these two aspects of the j-function to give a general theory of congruences modulo powers of primes satisfied by the Hauptmoduln appearing in monstrous moonshine. We prove that many of these Hauptmoduln satisfy such congruences, and we exhibit a relationship between these congruences and the group structure of the monster. We also find a distinguished class of subgroups of the monster with graded characters satisfying such congruences.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210189
citation_txt p-Adic Properties of Hauptmoduln with Applications to Moonshine / R.C. Chen, S. Marks, M. Tyler // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 42 назв. — англ.
work_keys_str_mv AT chenrc padicpropertiesofhauptmodulnwithapplicationstomoonshine
AT markss padicpropertiesofhauptmodulnwithapplicationstomoonshine
AT tylerm padicpropertiesofhauptmodulnwithapplicationstomoonshine
first_indexed 2025-12-07T21:24:41Z
last_indexed 2025-12-07T21:24:41Z
_version_ 1850886252612550656