The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices

Horn's problem, i.e., the study of the eigenvalues of the sum C=A+B of two matrices, given the spectrum of A and of B, is re-examined, comparing the case of real symmetric, complex Hermitian, and self-dual quaternionic 3×3 matrices. In particular, what can be said on the probability distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
Hauptverfasser: Coquereaux, R., Zuber, J.-B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210193
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices / R. Coquereaux, J.-B. Zuber // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 34 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine