The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices
Horn's problem, i.e., the study of the eigenvalues of the sum C=A+B of two matrices, given the spectrum of A and of B, is re-examined, comparing the case of real symmetric, complex Hermitian, and self-dual quaternionic 3×3 matrices. In particular, what can be said on the probability distributio...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2019 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2019
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/210193 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Horn Problem for Real Symmetric and Quaternionic Self-Dual Matrices / R. Coquereaux, J.-B. Zuber // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 34 назв. — англ. |