Explicit Solutions for a Nonlinear Vector Model on the Triangular Lattice
We present a family of explicit solutions for a nonlinear classical vector model with anisotropic Heisenberg-like interaction on the triangular lattice.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2019 |
| 1. Verfasser: | Vekslerchik, V.E. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2019
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/210194 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Explicit Solutions for a Nonlinear Vector Model on the Triangular Lattice / V.E. Vekslerchik // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Two-Dimensional Toda-Heisenberg Lattice
von: Vekslerchik, V.E.
Veröffentlicht: (2013) -
Distinctive features of the integrable nonlinear Schrӧdinger system on a ribbon of triangular lattice
von: O. O. Vakhnenko
Veröffentlicht: (2017) -
Distinctive features of the integrable nonlinear Schrӧdinger system on a ribbon of triangular lattice
von: O. O. Vakhnenko
Veröffentlicht: (2017) -
Self-organization of topological defects for a triangular-lattice magnetic dots array subject to a perpendicular magnetic field
von: Khymyn, R.S., et al.
Veröffentlicht: (2014) -
Phase transitions in the Ising model on a triangular lattice with different values of interlayer exchange interaction
von: A. K. Murtazaev, et al.
Veröffentlicht: (2019)