Contravariant Form on Tensor Product of Highest Weight Modules

We give a criterion for complete reducibility of tensor product V⊗Z of two irreducible highest weight modules V and Z over a classical or quantum semi-simple group in terms of a contravariant symmetric bilinear form on V⊗Z. This form is the product of the canonical contravariant forms on V and Z. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
1. Verfasser: Mudrov, A.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210196
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Contravariant Form on Tensor Product of Highest Weight Modules / A.I. Mudrov // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210196
record_format dspace
spelling Mudrov, A.I.
2025-12-03T14:35:26Z
2019
Contravariant Form on Tensor Product of Highest Weight Modules / A.I. Mudrov // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B10; 17B37
arXiv: 1709.08394
https://nasplib.isofts.kiev.ua/handle/123456789/210196
https://doi.org/10.3842/SIGMA.2019.026
We give a criterion for complete reducibility of tensor product V⊗Z of two irreducible highest weight modules V and Z over a classical or quantum semi-simple group in terms of a contravariant symmetric bilinear form on V⊗Z. This form is the product of the canonical contravariant forms on V and Z. Then V⊗Z is completely reducible if and only if the form is non-degenerate when restricted to the sum of all highest weight submodules in V⊗Z or equivalently to the span of singular vectors.
We are grateful to Joseph Bernstein for useful discussions. We are also indebted to the anonymous referees for careful reading of the text and valuable remarks. This study was supported by the RFBR grant 15-01-03148.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Contravariant Form on Tensor Product of Highest Weight Modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Contravariant Form on Tensor Product of Highest Weight Modules
spellingShingle Contravariant Form on Tensor Product of Highest Weight Modules
Mudrov, A.I.
title_short Contravariant Form on Tensor Product of Highest Weight Modules
title_full Contravariant Form on Tensor Product of Highest Weight Modules
title_fullStr Contravariant Form on Tensor Product of Highest Weight Modules
title_full_unstemmed Contravariant Form on Tensor Product of Highest Weight Modules
title_sort contravariant form on tensor product of highest weight modules
author Mudrov, A.I.
author_facet Mudrov, A.I.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We give a criterion for complete reducibility of tensor product V⊗Z of two irreducible highest weight modules V and Z over a classical or quantum semi-simple group in terms of a contravariant symmetric bilinear form on V⊗Z. This form is the product of the canonical contravariant forms on V and Z. Then V⊗Z is completely reducible if and only if the form is non-degenerate when restricted to the sum of all highest weight submodules in V⊗Z or equivalently to the span of singular vectors.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210196
citation_txt Contravariant Form on Tensor Product of Highest Weight Modules / A.I. Mudrov // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT mudrovai contravariantformontensorproductofhighestweightmodules
first_indexed 2025-12-07T21:24:42Z
last_indexed 2025-12-07T21:24:42Z
_version_ 1850886253631766528