Contravariant Form on Tensor Product of Highest Weight Modules
We give a criterion for complete reducibility of tensor product V⊗Z of two irreducible highest weight modules V and Z over a classical or quantum semi-simple group in terms of a contravariant symmetric bilinear form on V⊗Z. This form is the product of the canonical contravariant forms on V and Z. Th...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2019 |
| 1. Verfasser: | Mudrov, A.I. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2019
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/210196 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Contravariant Form on Tensor Product of Highest Weight Modules / A.I. Mudrov // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Highest ℓ-Weight Representations and Functional Relations
von: Nirov, K.S., et al.
Veröffentlicht: (2017) -
Weighted Tensor Products of Joyal Species, Graphs, and Charades
von: Street, R.
Veröffentlicht: (2016) -
Monads and tensor products
von: T. Radul
Veröffentlicht: (2017) -
Intellectualization of labor as the highest form of its division at the present stage of economic development
von: E. I. Buleev, et al.
Veröffentlicht: (2017) -
Generalized Weyl theorem and tensor product
von: Rashid, M.H.M.
Veröffentlicht: (2012)