Twisted de Rham Complex on Line and Singular Vectors in sl₂ˆ Verma Modules
We consider two complexes. The first complex is the twisted de Rham complex of scalar meromorphic differential forms on the projective line, holomorphic on the complement to a finite set of points. The second complex is the chain complex of the Lie algebra of sl₂-valued algebraic functions on the sa...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2019 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/210220 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Twisted de Rham Complex on Line and Singular Vectors in sl₂ˆ Verma Modules / A. Slinkin, A. Varchenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We consider two complexes. The first complex is the twisted de Rham complex of scalar meromorphic differential forms on the projective line, holomorphic on the complement to a finite set of points. The second complex is the chain complex of the Lie algebra of sl₂-valued algebraic functions on the same complement, with coefficients in a tensor product of contragradient Verma modules over the affine Lie algebra sl₂ˆ. In [Schechtman V., Varchenko A., Mosc. Math. J. 17 (2017), 787-802] a construction of a monomorphism of the first complex to the second was suggested, and it was indicated that under this monomorphism, the existence of singular vectors in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is reflected in the relations between the cohomology classes of the de Rham complex. In this paper, we prove these results.
|
|---|---|
| ISSN: | 1815-0659 |