Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations

We derive series representations for the tau functions of the q-Painlevé V, III₁, III₂, and III₃ equations, as degenerations of the tau functions of the q-Painlevé VI equation in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst. 2 (2017), xyx009, 27 pages]. Our tau functions are expressed in terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2019
Hauptverfasser: Matsuhira, Y., Nagoya, H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/210221
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations / Y. Matsuhira, H. Nagoya // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210221
record_format dspace
spelling Matsuhira, Y.
Nagoya, H.
2025-12-04T13:00:56Z
2019
Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations / Y. Matsuhira, H. Nagoya // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 28 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 39A13; 33E17; 05A30
arXiv: 1811.03285
https://nasplib.isofts.kiev.ua/handle/123456789/210221
https://doi.org/10.3842/SIGMA.2019.074
We derive series representations for the tau functions of the q-Painlevé V, III₁, III₂, and III₃ equations, as degenerations of the tau functions of the q-Painlevé VI equation in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst. 2 (2017), xyx009, 27 pages]. Our tau functions are expressed in terms of q-Nekrasov functions. Thus, our series representations for the tau functions have explicit combinatorial structures. We show that general solutions to the q-Painlevé V, III₁, III₂, and III₃ equations are written by our tau functions. We also prove that our tau functions for the q-Painlevé III₁, III₂, and III₃ equations satisfy the three-term bilinear equations for them.
This work is partially supported by JSPS KAKENHI Grant Number JP15K17560. The authors thank the referees for their valuable suggestions and comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations
spellingShingle Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations
Matsuhira, Y.
Nagoya, H.
title_short Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations
title_full Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations
title_fullStr Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations
title_full_unstemmed Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations
title_sort combinatorial expressions for the tau functions of q-painlevé v and iii equations
author Matsuhira, Y.
Nagoya, H.
author_facet Matsuhira, Y.
Nagoya, H.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We derive series representations for the tau functions of the q-Painlevé V, III₁, III₂, and III₃ equations, as degenerations of the tau functions of the q-Painlevé VI equation in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst. 2 (2017), xyx009, 27 pages]. Our tau functions are expressed in terms of q-Nekrasov functions. Thus, our series representations for the tau functions have explicit combinatorial structures. We show that general solutions to the q-Painlevé V, III₁, III₂, and III₃ equations are written by our tau functions. We also prove that our tau functions for the q-Painlevé III₁, III₂, and III₃ equations satisfy the three-term bilinear equations for them.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210221
citation_txt Combinatorial Expressions for the Tau Functions of q-Painlevé V and III Equations / Y. Matsuhira, H. Nagoya // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT matsuhiray combinatorialexpressionsforthetaufunctionsofqpainlevevandiiiequations
AT nagoyah combinatorialexpressionsforthetaufunctionsofqpainlevevandiiiequations
first_indexed 2025-12-07T21:24:47Z
last_indexed 2025-12-07T21:24:47Z
_version_ 1850886259131547648