Lagrangian Grassmannians and Spinor Varieties in Characteristic Two

The vector space of symmetric matrices of size n has a natural map to a projective space of dimension 2ⁿ −1 given by the principal minors. This map extends to the Lagrangian Grassmannian LG(n, 2n), and over the complex numbers, the image is defined, as a set, by quartic equations. In case the charac...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автори: van Geemen, B., Marrani, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210231
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Lagrangian Grassmannians and Spinor Varieties in Characteristic Two / B. van Geemen, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The vector space of symmetric matrices of size n has a natural map to a projective space of dimension 2ⁿ −1 given by the principal minors. This map extends to the Lagrangian Grassmannian LG(n, 2n), and over the complex numbers, the image is defined, as a set, by quartic equations. In case the characteristic of the field is two, it was observed that, for n=3,4, the image is defined by quadrics. In this paper, we show that this is the case for any n and that, moreover, the image is the spinor variety associated to Spin(2n+1). Since some of the motivating examples are of interest in supergravity and in the black-hole/qubit correspondence, we conclude with a brief examination of other cases related to integral Freudenthal triple systems over integral cubic Jordan algebras.
ISSN:1815-0659